案例分析:基于RFM的客户价值分析模型提供乐橙国际,至尊娱乐棋牌等产品欢迎广大商家洽谈业务合作

至尊娱乐棋牌

案例分析:基于RFM的客户价值分析模型


来源:乐橙国际 | 时间:2018-09-29

  本文用具体实例的方式,在RFM的基础上构建客户价值分析模型,探讨如何对客户群体进行细分,以及细分后如何进行客户价值分析。最终得到LRFMC模型,并将客户群体细分为重要保持客户、重要发展客户、重要挽留客户、一般客户、低价值客户五类。

  本文原始数据与分析思路来自《Python数据分析与挖掘实战》第七章,感谢这本书提供的数据集与分析框架。(这本书很不错,推荐)

  在面向客户制定运营策略、营销策略时,我们希望能够针对不同的客户推行不同的策略,实现精准化运营,以期获取最大的转化率。精准化运营的前提是客户关系管理,而客户关系管理的核心是客户分类。

  通过客户分类,对客户群体进行细分,区别出低价值客户、高价值客户,对不同的客户群体开展不同的个性化服务,将有限的资源合理地分配给不同价值的客户,实现效益最大化。

  在客户分类中,RFM模型是一个经典的分类模型,模型利用通用交易环节中最核心的三个维度——最近消费(Recency)、消费频率(Frequency)、消费金额(Monetary)细分客户群体,从而分析不同群体的客户价值。

  在某些商业形态中,客户与企业产生连接的核心指标会因产品特性而改变。如互联网产品中,以上三项指标可以相应地变为下图中的三项:最近一次登录、登录频率、在线 目标

  本实例借助某航空公司客户数据,探讨如何利用KMeans算法对客户群体进行细分,以及细分后如何利用RFM模型对客户价值进行分析,并识别出高价值客户。

  考虑到商用航空行业与一般商业形态的不同,决定在RFM模型的基础上,增加2个指标用于客户分群与价值分析,得到航空行业的LRFMC模型:

  由于本实例中的数据已经得到,便不需要在业务系统中抽取数据,直接开始对数据进行预处理即可。

  R = LAST_TO_END. (最后一次乘机时间至观测窗口结束时长)

  从表中可以发现:每个指标的数据取值范围分布较广,为提高后续聚类分析的准确性,还需要将L、R、F、M、C五类数据进行标准化处理。标准化方法有极大极小标准化、标准差标准化等方法,此处采用标准差标准化的方法对数据进行处理。

  以及对62044位客户贴上群体标签,记为1、2、3、4、5五类,并输出带有标签的Excel文件。结果如下图所示:

  同时针对业务需要,及参考RFM模型对客户类别的分类,定义五个等级的客户类别:

  平均折扣率高(C↑),最近有乘机记录(R↓),乘机次数高(F↑)或里程高(M↑)这类客户机票票价高,不在意机票折扣,经常乘机,是最理想的客户类型

  平均折扣率高(C↑),最近有乘机记录(R↓),乘机次数高(F↓)或里程高(M↓)这类客户机票票价高,不在意机票折扣,最近有乘机记录,但总里程低,具有很大的发展潜力

  平均折扣率高(C↑),乘机次数高(F↑)或里程高(M↑),最近无乘机记录(R↑)这类客户总里程高,但较长时间没有乘机,可能处于流失状态

  平均折扣率低(C↓),最近无乘机记录(R↑),乘机次数高(F↓)或里程高(M↓),入会时间短(L↓)这类客户机票票价低,经常买折扣机票,最近无乘机记录,可能是趁着折扣而选择购买,对品牌无忠诚度

  平均折扣率低(C ↓ ),最近无乘机记录(R ↑ ),乘机次数高(F ↓ )或里程高(M ↓ ),入会时间短(L ↓ )这类客户与一般客户类似,机票票价低,经常买折扣机票,最近无乘机记录,可能是趁着折扣而选择购买,对品牌无忠诚度

  在数据与处理时,我们已经将62044位用户与客户群体一一对应,现在每类客户群体也对应了客户价值,至此得到了62044位客户的价值分类结果,建模完成。

  按照20/80法则:一般而言企业的80%收入由头部20%的用户贡献。从上图中也能发现:忠诚的重要保留客户、中发展客户必然贡献了企业收入的绝大部分,企业也需要投入资源服务好这部分客户。

  同时,重要保持客户、重要发展客户、重要挽留客户这三类客户其实也对应着客户生命周期中的发展期、稳定器、衰退期三个时期。从客户生命周期的角度讲,也应重点投入资源召回衰退期的客户。

  一般而言,数据分析最终的目的是针对分析结果提出并开展一系列的运营/营销策略,以期帮助企业发展。在本实例中,运营策略有三个方向:

  声明:该文观点仅代表作者本人,搜狐号系信息发布平台,搜狐仅提供信息存储空间服务。

相关www.yzms8.com

    无相关信息